YES(O(1),O(n^3)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^3)). Strict Trs: { ite(tt(), u, v) -> u , ite(ff(), u, v) -> v , find(u, v, nil()) -> ff() , find(u, v, cons(cons(u, v), E)) -> tt() , find(u, v, cons(cons(u2, v2), E)) -> find(u, v, E) , complete(u, nil(), E) -> tt() , complete(u, cons(v, S), E) -> ite(find(u, v, E), complete(u, S, E), ff()) , clique(nil(), E) -> tt() , clique(cons(u, K), E) -> ite(complete(u, K, E), clique(K, E), ff()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^3)) We use the processor 'Small Polynomial Path Order (PS,3-bounded)' to orient following rules strictly. Trs: { ite(tt(), u, v) -> u , ite(ff(), u, v) -> v , find(u, v, nil()) -> ff() , find(u, v, cons(cons(u, v), E)) -> tt() , find(u, v, cons(cons(u2, v2), E)) -> find(u, v, E) , complete(u, nil(), E) -> tt() , complete(u, cons(v, S), E) -> ite(find(u, v, E), complete(u, S, E), ff()) , clique(nil(), E) -> tt() , clique(cons(u, K), E) -> ite(complete(u, K, E), clique(K, E), ff()) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^3)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The input was oriented with the instance of 'Small Polynomial Path Order (PS,3-bounded)' as induced by the safe mapping safe(ite) = {1, 2, 3}, safe(tt) = {}, safe(ff) = {}, safe(find) = {1, 2}, safe(nil) = {}, safe(cons) = {1, 2}, safe(complete) = {1}, safe(clique) = {} and precedence complete > ite, complete > find, clique > ite, clique > find, clique > complete, ite ~ find . Following symbols are considered recursive: {ite, find, complete, clique} The recursion depth is 3. For your convenience, here are the satisfied ordering constraints: ite(; tt(), u, v) > u ite(; ff(), u, v) > v find(nil(); u, v) > ff() find(cons(; cons(; u, v), E); u, v) > tt() find(cons(; cons(; u2, v2), E); u, v) > find(E; u, v) complete(nil(), E; u) > tt() complete(cons(; v, S), E; u) > ite(; find(E; u, v), complete(S, E; u), ff()) clique(nil(), E;) > tt() clique(cons(; u, K), E;) > ite(; complete(K, E; u), clique(K, E;), ff()) We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { ite(tt(), u, v) -> u , ite(ff(), u, v) -> v , find(u, v, nil()) -> ff() , find(u, v, cons(cons(u, v), E)) -> tt() , find(u, v, cons(cons(u2, v2), E)) -> find(u, v, E) , complete(u, nil(), E) -> tt() , complete(u, cons(v, S), E) -> ite(find(u, v, E), complete(u, S, E), ff()) , clique(nil(), E) -> tt() , clique(cons(u, K), E) -> ite(complete(u, K, E), clique(K, E), ff()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^3))